Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(4): 423-441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563825

RESUMO

The possible existence of a microbial community in the venusian clouds is one of the most intriguing hypotheses in modern astrobiology. Such a community must be characterized by a high survivability potential under severe environmental conditions, the most extreme of which are very low pH levels and water activity. Considering different scenarios for the origin of life and geological history of our planet, a few of these scenarios are discussed in the context of the origin of hypothetical microbial life within the venusian cloud layer. The existence of liquid water on the surface of ancient Venus is one of the key outstanding questions influencing this possibility. We link the inherent attributes of microbial life as we know it that favor the persistence of life in such an environment and review the possible scenarios of life's origin and its evolution under a strong greenhouse effect and loss of water on Venus. We also propose a roadmap and describe a novel methodological approach for astrobiological research in the framework of future missions to Venus with the intent to reveal whether life exists today on the planet.


Assuntos
Vênus , Planetas , Exobiologia , Água/química
2.
Plants (Basel) ; 11(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35336644

RESUMO

Mitochondrial DNA (mtDNA), being maternally inherited in plants of the family Pinaceae, is an important source of phylogeographic information. However, its use is hindered by a low mutation rate and frequent structure rearrangements. In the present study, we tested the method of genomic libraries enrichment with mtDNA via the sequence capture method yielding mtDNA data which were further used to reconstruct the phylogenetic tree of the genus Abies. The baits for hybrid capture were obtained by long-range PCR using primers designed on the basis of the assembly of Abies sibirica Ledeb. mitochondrial genome. Mitochondrial genomes of Picea sitchensis (Bong.) Carr., Larix sibirica Ledeb., and Keteleeria davidiana (Bertrand) Beissn. were used as an outgroup. The resulting phylogenetic tree consists of two sister branches, including the Eurasian and American species, respectively, with some exceptions. The subclade of A. sachalinensis (F. Schmidt) Mast. and A. veitchii Lindl. (Japan and Sakhalin islands) occupies a basal position in the branch of American firs, probably due to the complex history of fir migrations from North America to Eurasia. The tree has high support for majority of clades. For species represented by more than one sample an intraspecific variability was found which is suitable to design mtDNA markers for phylogeographic and population studies.

3.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638960

RESUMO

Many current-generation biomedical implants are fabricated from the Ti-6Al-4V alloy because it has many attractive properties, such as low density and biocompatibility. However, the elastic modulus of this alloy is much larger than that of the surrounding bone, leading to bone resorption and, eventually, implant failure. In the present study, we synthesized and performed a detailed analysis of a novel low elastic modulus Ti-based alloy (Ti-28Nb-5Zr-2Ta-2Sn (TNZTS alloy)) using a variety of methods, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and tensile test. Additionally, the in vitro biocompatibility of the TNZTS alloy was evaluated using SCP-1, SaOs-2, and THP-1 cell lines and primary human osteoblasts. Compared to Ti-6Al-4V, the elastic modulus of TNZTS alloy was significantly lower, while measures of its in vitro biocompatibility are comparable. O2 plasma treatment of the surface of the alloy significantly increased its hydrophilicity and, hence, its in vitro biocompatibility. TNZTS alloy specimens did not induce the release of cytokines by macrophages, indicating that such scaffolds would not trigger inflammatory responses. The present results suggest that the TNZTS alloy may have potential as an alternative to Ti-6Al-4V.


Assuntos
Ligas/química , Ligas/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Nióbio/química , Tantálio/química , Estanho/química , Titânio/química , Zircônio/química , Ligas/farmacologia , Materiais Biocompatíveis/farmacologia , Módulo de Elasticidade , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais/métodos , Osteoblastos/efeitos dos fármacos , Próteses e Implantes , Propriedades de Superfície , Células THP-1 , Resistência à Tração , Titânio/farmacologia
4.
Life (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685405

RESUMO

The data available at the moment suggest that ancient Venus was covered by extensive bodies of water which could harbor life. Later, however, the drastic overheating of the planet made the surface of Venus uninhabitable for Earth-type life forms. Nevertheless, hypothetical Venusian organisms could have gradually adapted to conditions within the cloud layer of Venus-the only niche containing liquid water where the Earth-type extremophiles could survive. Here we hypothesize that the unified internal volume of a microbial community habitat is represented by the heterophase liquid-gas foam structure of Venusian clouds. Such unity of internal space within foam water volume facilitates microbial cells movements and trophic interactions between microorganisms that creates favorable conditions for the effective development of a true microbial community. The stabilization of a foam heterophase structure can be provided by various surfactants including those synthesized by living cells and products released during cell lysis. Such a foam system could harbor a microbial community of different species of (poly)extremophilic microorganisms that are capable of photo- and chemosynthesis and may be closely integrated into aero-geochemical processes including the processes of high-temperature polymer synthesis on the planet's surface. Different complex nanostructures transferred to the cloud layers by convection flows could further contribute to the stabilization of heterophase liquid-gas foam structure and participate in chemical and photochemical reactions, thus supporting ecosystem stability.

5.
Astrobiology ; 21(10): 1186-1205, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34255549

RESUMO

The search for life beyond Earth has focused on Mars and the icy moons Europa and Enceladus, all of which are considered a safe haven for life due to evidence of current or past water. The surface of Venus, on the other hand, has extreme conditions that make it a nonhabitable environment to life as we know it. This is in contrast, however, to its cloud layer, which, while still an extreme environment, may prove to be a safe haven for some extreme forms of life similar to extremophiles on Earth. We consider the venusian clouds a habitable environment based on the presence of (1) a solvent for biochemical reactions, (2) appropriate physicochemical conditions, (3) available energy, and (4) biologically relevant elements. The diversity of extreme microbial ecosystems on Earth has allowed us to identify terrestrial chemolithoautotrophic microorganisms that may be analogs to putative venusian organisms. Here, we hypothesize and describe biological processes that may be performed by such organisms in the venusian clouds. To detect putative venusian organisms, we describe potential biosignature detection methods, which include metal-microbial interactions and optical methods. Finally, we describe currently available technology that can potentially be used for modeling and simulation experiments.


Assuntos
Júpiter , Vênus , Ecossistema , Exobiologia , Meio Ambiente Extraterreno
6.
Carbohydr Polym ; 252: 117204, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183639

RESUMO

Chitin is the second most abundant biopolymer and functions as the main structural component in a variety of living organisms. In nature, chitin rarely occurs in a pure form, but rather as nanoorganized chitin-proteins, chitin-pigments, or chitin-mineral composite biomaterials. Although chitin has a long history of scientific studies, it is still extensively investigated for practical applications in medicine, biotechnology, and biomimetics. The complexity of chitin has required the development of highly sensitive analytical methods for its identification. These methods are crucial for furthering disease diagnostics as well as advancing modern chitin-related technologies. Here we provide a summary of chitin identification by spectroscopic (NEXAFS, FTIR, Raman, NMR, colorimetry), chromatographic (TLC, GC, HPLC), electrophoretic (HPCE), and diffraction methods (XRD, WAXS, SAXS, HRTEM-SAED). Biochemical and immunochemical (ELISA, immunostaining) methods are described with respect to their medical application. This review outlines the history as well as the current progress in the analytical methods for chitin identification.


Assuntos
Quitina , Cromatografia/métodos , Eletroforese/métodos , Imunoensaio/métodos , Análise Espectral/métodos , Animais , Quitina/química , Quitina/ultraestrutura
7.
Mar Drugs ; 18(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255647

RESUMO

The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years.


Assuntos
Organismos Aquáticos/metabolismo , Materiais Biocompatíveis/farmacologia , Biotecnologia , Minerais/farmacologia , Polissacarídeos/farmacologia , Proteínas/farmacologia , Animais , Materiais Biocompatíveis/isolamento & purificação , Biotecnologia/tendências , Difusão de Inovações , Humanos , Minerais/isolamento & purificação , Polissacarídeos/isolamento & purificação , Proteínas/isolamento & purificação , Fatores de Tempo
8.
Int J Biol Macromol ; 162: 1187-1194, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615216

RESUMO

Studies on the identification, properties and function of chitin in sponges (Porifera), which are recognized as the first multicellular organisms on Earth, continue to be of fundamental scientific interest. The occurrence of chitin has so far been reported in 21 marine sponge species and only in two inhabiting fresh water. In this study, we present the discovery of α-chitin in the endemic demosponge Ochridaspongia rotunda, found in Lake Ohrid, which dates from the Tertiary. The presence of chitin in this species was confirmed using special staining, a chitinase test, FTIR, Raman and NEXAFS spectroscopy, and electrospray ionization mass spectrometry (ESI-MS). In contrast to the case of marine sponges, chitin in O. rotunda has been found only within its holdfast, suggesting a role of chitin in the attachment of the sponge to the hard substratum. Isolated fibrous matter strongly resemble the shape and size of the sponge holdfast with membrane-like structure.


Assuntos
Quitina/química , Quitina/metabolismo , Poríferos/química , Poríferos/metabolismo , Animais
9.
Mar Drugs ; 18(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498448

RESUMO

The development of novel and effective methods for the isolation of chitin, which remains one of the fundamental aminopolysaccharides within skeletal structures of diverse marine invertebrates, is still relevant. In contrast to numerous studies on chitin extraction from crustaceans, mollusks and sponges, there are only a few reports concerning its isolation from corals, and especially black corals (Antipatharia). In this work, we report the stepwise isolation and identification of chitin from Cirrhipathes sp. (Antipatharia, Antipathidae) for the first time. The proposed method, aiming at the extraction of the chitinous scaffold from the skeleton of black coral species, combined a well-known chemical treatment with in situ electrolysis, using a concentrated Na2SO4 aqueous solution as the electrolyte. This novel method allows the isolation of α-chitin in the form of a microporous membrane-like material. Moreover, the extracted chitinous scaffold, with a well-preserved, unique pore distribution, has been extracted in an astoundingly short time (12 h) compared to the earlier reported attempts at chitin isolation from Antipatharia corals.


Assuntos
Antozoários/anatomia & histologia , Antozoários/química , Quitina/isolamento & purificação , Animais , Quitina/química , Eletroquímica
10.
Mar Drugs ; 18(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092907

RESUMO

Structure-based tissue engineering requires large-scale 3D cell/tissue manufacture technologies, to produce biologically active scaffolds. Special attention is currently paid to naturally pre-designed scaffolds found in skeletons of marine sponges, which represent a renewable resource of biomaterials. Here, an innovative approach to the production of mineralized scaffolds of natural origin is proposed. For the first time, a method to obtain calcium carbonate deposition ex vivo, using living mollusks hemolymph and a marine-sponge-derived template, is specifically described. For this purpose, the marine sponge Aplysin aarcheri and the terrestrial snail Cornu aspersum were selected as appropriate 3D chitinous scaffold and as hemolymph donor, respectively. The formation of calcium-based phase on the surface of chitinous matrix after its immersion into hemolymph was confirmed by Alizarin Red staining. A direct role of mollusks hemocytes is proposed in the creation of fine-tuned microenvironment necessary for calcification ex vivo. The X-ray diffraction pattern of the sample showed a high CaCO3 amorphous content. Raman spectroscopy evidenced also a crystalline component, with spectra corresponding to biogenic calcite. This study resulted in the development of a new biomimetic product based on ex vivo synthetized ACC and calcite tightly bound to the surface of 3D sponge chitin structure.


Assuntos
Quitina/análogos & derivados , Quitina/química , Hemolinfa/metabolismo , Poríferos/metabolismo , Caramujos/metabolismo , Alicerces Teciduais , Animais , Biomineralização , Carbonato de Cálcio/química , Difração de Raios X
11.
Nanomaterials (Basel) ; 10(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069874

RESUMO

One of the major challenges of implantology is to design nanoscale modifications of titanium implant surfaces inducing osseointegration. The aim of this study was to investigate the behavior of rat osteoblasts cultured on anodized TiO2 nanotubes of different crystallinity (amorphous and anatase phase) up to 24 days. TiO2 nanotubes were fabricated on VT1-0 titanium foil via a two-step anodization at 20 V using NH4F as an electrolyte. Anatase-phase samples were prepared by heat treatment at 500 °C for 1 h. VT1-0 samples with flat surfaces were used as controls. Primary rat osteoblasts were seeded over experimental surfaces for several incubation times. Scanning electron microscopy (SEM) was used to analyze tested surfaces and cell morphology. Cell adhesion and proliferation were investigated by cell counting. Osteogenic differentiation of cells was evaluated by qPCR of runt-related transcription factor 2 (RUNX2), osteopontin (OPN), integrin binding sialoprotein (IBSP), alkaline phosphatase (ALP) and osteocalcin (OCN). Cell adhesion and proliferation, cell morphology and the expression of osteogenic markers were affected by TiO2 nanotube layered substrates of amorphous and anatase crystallinity. In comparison with flat titanium, along with increased cell adhesion and cell growth a large portion of osteoblasts grown on the both nanostructured surfaces exhibited an osteocyte-like morphology as early as 48 h of culture. Moreover, the expression of all tested osteogenic markers in cells cultured on amorphous and anatase TiO2 nanotubes was upregulated at least at one of the analyzed time points. To summarize, we demonstrated that amorphous and anodized TiO2 layered substrates are highly biocompatible with rat osteoblasts and that the surface modification with about 1500 nm length nanotubes of 35 ± 4 (amorphous phase) and 41 ± 8 nm (anatase phase) in diameter is sufficient to induce their osteogenic differentiation. Such results are significant to the engineering of coating strategies for orthopedic implants aimed to establish a more efficient bone to implant contact and enhance bone repair.

12.
Mol Phylogenet Evol ; 125: 14-28, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29551520

RESUMO

The origin of conifer genera, the main components of mountain temperate and boreal forests, was deemed to arise in the Mesozoic, although paleontological records and molecular data point to a recent diversification, presumably related to Neogene cooling. The geographical area(s) where the modern lines of conifers emerged remains uncertain, as is the sequence of events leading to their present distribution. To gain further insights into the biogeography of firs (Abies), we conducted phylogenetic analyses of chloroplast, mitochondrial and nuclear markers. The species tree, generated from ten single-copy nuclear genes, yielded probably the best phylogenetic hypothesis available for Abies. The tree obtained from five regions of chloroplast DNA largely corresponded to the nuclear species tree. Ancestral area reconstructions based on fossil calibrated chloroplast DNA and nuclear DNA trees pointed to repeated intercontinental migrations. The mitochondrial DNA haplotype tree, however, disagreed with nuclear and chloroplast DNA trees. It consisted of two clusters: one included mainly American haplotypes, while the other was composed of only Eurasian haplotypes. Presumably, this conflict is due to inter-continental migrations and introgressive hybridization, accompanied by the capture of the mitotypes from aboriginal species by the invading firs. Given that several species inhabiting Northeastern Asia carry American mitotypes and mutations typical for the American cluster, whereas no Asian mitotypes were detected within the American species, we hypothesize that Abies migrated from America to Eurasia, but not in the opposite direction. The direction and age of intercontinental migrations in firs are congruent with other conifers, such as spruces and pines of subsection Strobus, suggesting that these events had the same cause.


Assuntos
Abies/genética , Genoma de Planta , Abies/classificação , América , Ásia , Teorema de Bayes , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Ecótipo , Europa (Continente) , Geografia , Filogenia , Fatores de Tempo
13.
Int J Phytoremediation ; 19(2): 104-112, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27259078

RESUMO

Agrochemicals significantly contribute to environmental pollution. In the USA, atrazine is a widely used pesticide and commonly found in rivers, water systems, and rural wells. Phytoremediation can be a cost-effective means of removing pesticides from soil. The objective of this project was to investigate the ability of prairie grasses to remove atrazine. 14C-labeled atrazine was added to sterilized sand and water/nutrient cultures, and the analysis was performed after 21 days. Switchgrass and big bluestem were promising species for phytoremediation, taking up about 40% of the applied [14C] in liquid hydroponic cultures, and between 20% and 33% in sand cultures. Yellow Indiangrass showed low resistance to atrazine toxicity and low uptake of [14C] atrazine in liquid hydroponic cultures. Atrazine degradation increased progressively from sand to roots and leaves. Most atrazine taken up by prairie grasses from sand culture was degraded to metabolites, which accounted for 60-80% of [14C] detected in leaves. Deisopropylatrazine (DIA) was the main metabolite detected in sand and roots, whereas in leaves further metabolism took place, forming increased amounts of didealkylatrazine (DDA) and an unidentified metabolite. In conclusion, prairie grasses achieved high atrazine removal and degradation, showing a high potential for phytoremediation.


Assuntos
Atrazina/metabolismo , Herbicidas/metabolismo , Poaceae/metabolismo , Poluentes do Solo/metabolismo , Andropogon/metabolismo , Biodegradação Ambiental , Pradaria , Panicum/metabolismo
14.
New Phytol ; 187(4): 957-968, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20673282

RESUMO

*In the Ustilago maydis genome, several novel secreted effector proteins are encoded by gene families. Because of the limited number of selectable markers, the ability to carry out sequential gene deletions has limited the analysis of effector gene families that may have redundant functions. *Here, we established an inducible FLP-mediated recombination system in U. maydis that allows repeated rounds of gene deletion using a single selectable marker (Hyg(R)). To avoid genome rearrangements via FRT sites remaining in the genome after excision, different mutated FRT sites were introduced. *The FLP-mediated selectable marker-removal technique was successfully applied to delete a family of 11 effector genes (eff1) using five sequential rounds of recombination. We showed that expression of all 11 genes is up-regulated during the biotrophic phase. Strains carrying deletions of 9 or all 11 genes showed a significant reduction in virulence, and this phenotype could be partially complemented by the introduction of different members from the gene family, demonstrating redundancy. *The establishment of the FLP/FRT system in a plant pathogenic fungus paves the way for analyzing multigene families with redundant functions.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Família Multigênica , Doenças das Plantas/microbiologia , Recombinação Genética , Ustilago/patogenicidade , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genótipo , Fenótipo , Transformação Genética , Ustilago/genética , Ustilago/metabolismo , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...